Is Ai Chi beneficial for balance, pain, functional mobility, and quality of life in adults?: A scoping review Emily Dunlap ¹, Johan Lambeck², Pei-Hsin Ku³, and Denise Gobert⁴ ¹Department of Kinesiology & Health Education, University of Texas at Austin, Austin, TX, USA; ²International Aquatic Therapy Faculty, Valens, Switzerland; ³Department Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan, ROC; ⁴Department of Physical Therapy, Texas State, Round Rock, TX, USA ## INTRODUCTION # METHODS # Table. Ai Chi between-group comparison | Ai Chi is a form of | |-------------------------| | mindful aquatic | | intervention related to | | Qigong and Tai Chi. | The purpose of this scoping review was to summarize available research on Ai Chi for balance, pain, functional mobility and quality of life (QOL) in adults. | | Study | Population | n | PEDRO
score | BALANCE | | PAIN | | MOBILITY | | QUALITY OF LIFE | | |--------------------------------------|-----------------------------------|----------------------------|----|----------------|-------------------------|----------------------|------------------|-------------------|-----------------------------------|---------------------------------|----------------------------------|---------------------------------| | Comparison
Group | | | | | Ai Chi
better | Groups
similar | | Land
Exercises | Kurt ¹⁴ | Parkinson's
disease | 40 | 7/10 | BBS***
Biodex*** | | | | TUG** | | PDQ-39***
UPDRS*** | | | | Pérez-de la
Cruz ¹⁵ | Parkinson's
disease | 30 | 7/10 | Tinetti***
BBS*** | | VAS** | | TUG***
FTSST** | | | | | | Pérez-de la
Cruz ¹⁶ | Parkinson's disease | 29 | 6/10 | Single leg
stance*** | | VAS** | | TUG***
FTSST** | | | PDQ-39 | | | Castro-
Sánchez ²¹ | Multiple
sclerosis | 71 | 6/10 | | | VAS* | MPQ-PPI | RMDQ*,
MFIS-Ph*
MSIS-29-Ph* | Barthel
Index | MPQ-PRI*,
BDI*
MSIS-29-Ps* | FSS, MFIS-
Co and Ps | | | Bayraktar ²⁷ | Multiple
sclerosis | 18 | 3/10 | Single leg
stance* | | | | TUG* | 6MWT | | | | | Nissim ²⁴ | intellectual
disability | 41 | 5/10 | Tinetti:
balance* | | | | | Tinetti:
gait | | | | | Shams-
Elden ²⁹ | Healthy young adults | 20 | 2/10 | Standing
Stork Test | | | | TUG | | | | | | Pérez-de la
Cruz ¹⁷ | Parkinson
disease | 30 | 6/10 | | | VAS** | | | | GDS*** | | | Alternate
Aquatic
Intervention | Calandre ¹⁸ | Fibromyalgia | 81 | 5/10 | | | | VAS | | | | FIQ, BDI
STAI, PSQI
SF-12 | | | Covill ²⁶ | Elderly | 32 | 2/10 | | ABC, BBS | | NPRS | | TUG | | | | | So ²⁸ | Low back
pain | 44 | 3/10 | | Single leg
stance | | VAS | | RMDQ | | | | | Ku ²³ | Chronic
Stroke | 20 | 8/10 | BBS* | | | | Fugl-Meyer
Assessment* | gait speed
cadence
SL, ST | | | | Usual care | Villegas ²⁵ | Parkinson's
disease | 15 | 5/10 | | | | | | | UPDRS* | PDQ-39 | | | Santana ¹⁹ | Fibromyalgia | 9 | 4/10 | | | | VAS | | | | FIQ | | | Camilotti ²² | Back Pain | 29 | 4/10 | | | VAS** | | | | ODI** | | RESULTS #### **Abbreviations:** 6MWT, 6 Minute Walk Test; ABC, Activities-specific Balance Confidence Scale; BBS, Berg Balance Scale; BDI, Beck's Depression Inventory; FIQ, Fibromyalgia Impact Questionnaire; FSS, Fatigue Severity Scale; FTSST, Five Time Sit to Stand Test; GDS, Geriatric Depression Scale; MPQ (PPI/PRI), McGill Pain Questionnaire (PPI, Present Pain Intensity; PRI, Present Rating Index); MFIS (Ph/Co/PS), Modified Fatigue Impact Scale (Ph= physical, Co =-Cognitive, PS=-Psychosocial); MSIS-29-Ps/Ph, Multiple Sclerosis Impact Scale-29 (Ps= Psychological, Ph= Physical); NPRS, Numeric Pain Rating Scale; ODI, Oswestry Disability Index; PDQ-39, Parkinson's Disease Questionnaire-39; PSQI, Pittsburgh Sleep Quality Index; SF-12, 12-Item Short Form Health Survey; SL, Stride length: ST, Stride time; STAI, State and Trait Anxiety Inventory; TUG, Timed Up & Go; UPDRS, Unified Parkinson's Disease Rating Scale; VAS, Visual Analog Scale; ^ Ai Chi group show superior improvement to comparison group, ^^ Ai Chi and comparison group have similar results, ^^^ Comparison group show superior results to Ai chi group, * p<0.5, ** p<0.01, ***p<0.001 ### CONCLUSIONS The qualitative analysis revealed favorable results with benefits from Ai Chi in a variety of patient populations. The bulk of the findings found Ai Chi intervention to have superior results for balance, pain, functional mobility, and quality of life compared with land-based intervention and similar results compared with an alternative aquatic intervention. Further study is warranted.